
Analyzing Snort

Puneet Mehrotra∗

University of British Columbia
puneet89@cs.ubc.ca

Swati Goswami∗
University of British Columbia
sggoswam@cs.ubc.ca

1. ABSTRACT
Verifying systems code is hard because of concurrency and
inherent complexity of the code. Understanding the invari-
ants and other behavioral and performance characteristics of
a distributed systems is challenging because multiple nodes
communicate and coordinate together towards the task of
performing a computation.

Verification methods and tools implicitly assume that the
code to be verified is deterministic. That is users of the soft-
ware will provide relevant inputs, and by verifying program
behavior using all possible values of that input, a given ver-
ification methodology can draw inferences about a system.

In the case of distributed software, the assumption of im-
plicit determinism is void. Network software typically works
in collaboration with other compute nodes in order to ful-
fill the required functionality. For example, in a peer-to-peer
system, peers detect node failures using heartbeat messages.
Service Oriented Architecture is another example where a
number of services communicate using a complex chain of
RPC calls. Since the underlying communication takes place
in the form of raw packets, often the program behavior can
potentially change if the packets are received out of order
or packets are lost in the network. Therefore, in this con-
text, both the incoming data and the send/receive order can
potentially impact program behavior and consequently in-
crease the complexity of verification methodology.

An additional challenge is attributed to concurrency. Most
modern systems use multi-threading to achieve better per-
formance. In such a case, the outcome of a program is a
function of how individual threads are interleaved together.
Reasoning about such interleaved execution paths is hard
and adds another layer of complexity to the process of veri-
fication.

Given the above challenges, we were curious about the us-
ability of existing symbolic execution tools for verification

*These authors contributed equally to this work

.

of system software. In particular, we were interested in
understanding how easy it is to use symbolic execution to
verify systems software that interacts with the networking
stack. We, therefore, analyzed Snort using the popular sym-
bolic execution engine named KLEE [3]. We documented
the challenges that we encountered along the way. We also
looked at recent research papers to understand how they
approach the problem of verifying such code.

2. INTRODUCTION
Packet processing functionality in the network like load bal-
ancing, network address translation, and intrusion detection
and prevention systems have historically been implemented
using hardware devices called middleboxes. This approach
has several drawbacks including lack of flexibility in moving
across different vendors, high operating costs and require-
ment for tedious manual configurations. Hardware upgrades
are rare and as a result network operators don’t have a lot of
flexibility in changing functionality. These problems can be
solved by implementing the same functionality in software.
Such packet processing units are called Network Functions
(NF).

NFs are deployed on commodity hardware units. More-
over, the usage of software stack for implementing middlebox
functionality adds agility to the development and deploy-
ment process. Verification for NFs is particularly important
because NFs are on the critical path of the entry of packets
into the system. Moreover, given their strategic position in
the execution path, NFs can be leveraged to detect DDoS
attacks. NFs are latency critical, and therefore the code
has to be verified for both functionality and performance
characteristics. Since NFs are executed on general purpose
processors, performance verification becomes important.

Networks, in general, are hard to debug and reason about,
and as a result, they are associated with two distinct cat-
egories of verification: Network Verification and NF verifi-
cation. Reachability analysis between nodes in a given net-
work topology and presence of loops are examples of ques-
tions that network verification seeks to answer. Network
verification looks at the holistic view of individual network
configurations of all the devices connected together. Net-
work Function verification, on the other hand, is concerned
about the semantics of individual NFs and its properties like
susceptibility to buffer overflows, memory leaks etc. It is in-
dependent of the topology and workload characteristics of
the network.

In this project, we gauge the usability of existing tools for



NF verification. To this end, we analyze Snort using a state-
of-art Symbolic Execution Engine (SEE) called KLEE. Rest
of the report is organized as follows: Section 3 talks about
relevant background information about Snort and KLEE.
Section 4 focuses on the hurdles we encountered when in-
tegrating KLEE with complex pieces of software. Section
5 elaborates about out evaluation results for Snort 1.3. We
then talk about relevant research papers and elaborate about
their strengths and limitations. Lastly, we conclude about
our learnings both about the practical aspect of using KLEE
and usability of such tools.

3. BACKGROUND
3.1 Snort
Snort is an open source Intrusion Detection System (IDS).
Snort was first published in January 1999, and since then
has evolved gradually into a more complex system. Later
versions of Snort support the below major functionality:

• Packet Sniffer: Snort can be configured to listen to
a network interface. It then reads the packets and
performs actions as specified by the user.

• pcap File Replayer: We can replay pcap files using
Snort. This functionality comes in particularly handy
for testing NF codebase against different workloads for
performance benchmarking and for testing code in gen-
eral.

• Intrusion Prevention System (IPS): Early ver-
sions of Snort only created a log/alert messages in re-
sponse to the incoming packets. Later versions of Snort
can drop packets in accordance with the user provided
configuration.

Developers can specify what actions Snort is expected to
take in response to different packets using Snort’s rule lan-
guage. Snort’s rules consist of below major components:

• Action (Example log, alert)

• Protocol (ip, tcp, udp etc.)

• Source IP address and port

• Destination IP address and port

• Direction operator: -> is unidirectional operator and
<> is bidirectional operator. It indicates whether rule
is applicable to traffic flowing in a single direction or
both directions.

Below is a sample rule:

l og tcp any any −> 192 . 168 . 1 . 0/24 :6000

This rule indicates that all TCP traffic from any source IP
address and source port with a destination port less than
6000 should be logged. Similarly, the developer can create
alert rules for different types of incoming traffic and source
and destination IP address and port combinations.

3.2 KLEE
KLEE [3] is a symbolic execution engine capable of auto-
matically generating tests for the code to be verified. KLEE
is limited to analyzing C code.
At a high-level, KLEE has two goals:

• Hit every line of executable code in the program and

• Detect at each dangerous operation (e.g., dereference,
assertion) if any input value exists that could cause an
error.

KLEE achieves the above goals by executing programs sym-
bolically. Unlike normal execution, where operations pro-
duce concrete values from their operands, KLEE generates
constraints that describe the set of values possible on a given
path. When KLEE detects an error or when a path reaches
an exit call, KLEE solves the current path’s constraints to
produce a test case that will follow the same path when re-
run on an unmodified version of the checked program (e.g,
compiled with gcc).
To demonstrate the usefulness of their tool, the authors ran
KLEE on unmodified GNU Coreutils [1] and found 3 unique
bugs, which went undetected for 15 years.

4. CHALLENGES
We ran into a number of technical glitches when execut-
ing Snort with KLEE. We went through many iterations of
trying to get different versions of Snort - starting from the
latest version (Snort 3.0) to Snort 1.3, while also trying to
get iptables to work with KLEE. In this section, we talk
about the many issues we ran into, the steps we took to work
around them, and the lessons we learned from that exercise.

• Snort 3.0: This is the latest version of Snort, and is
currently available as a beta release. Snort 3.0 is mod-
ular, multi-threaded, and has a lot of features that
make it easy to use and deploy.
We tried to use Snort 3.0 for the term project, but soon
realized that KLEE does not support multi-threaded
program analysis. We could not proceed any further
with this Snort release and tried to find an earlier ver-
sion to test.

• Snort 2.9.12: This is the current stable release of the
product. We tried to analyze Snort 2.9 with KLEE,
and soon realized that it has a lot of dependencies -
all of which need to be recompiled with WLLVM (Whole
program LLVM) to generate KLEE supported Inter-
mediate Representation(IR).
We were able to convert required dependencies into
LLVM IR to run symbolic execution on Snort. But,
we were only able to execute the command to list the
version. When we tried to make more changes to Snort
to exercise a more meaningful code path, we ran into
header file conflicts. We could not get these resolved,
because of the inherent complexity of Snort code.

• iptables Given that we were not able to run a complex
code base with KLEE, we decided to try a simpler fire-
wall program. The most viable option that emerged
was iptables, which is a user-space utility to install
Netfilter kernel rules.
We started compiling iptables code and that of its

2



many dependencies using wllvm. We succeeded in
transforming all the dependencies to the LLVM IR.
But, when we started running actual rules, we quickly
realized that there is limited support for sockets in
uclibc (standard C library encapsulating important
functions like I/O, string utilities, socket calls etc.).
The socket functions under the cover use inline assem-
bly code. KLEE does not support symbolic execution
of inline assembly code, and as a result, it does not
support socket binding.

After running into the above challenges, we moved to
simpler versions of Snort. We were able to evaluate
Snort1.3 with KLEE and the relevant details are elab-
orated in the following section.

5. EVALUATION
After running into the above problems, we looked at recent
papers for inspiration on how researchers have approached
the problem of verifying complex pieces of software. When
doing a literature survey, we came across a HotNets 2016
paper [7], where Wu et al have analyzed there proposed
methodology against Snort 1.0. Snort 1.0 was released in
1999, whereas the paper was published in 2016. We then re-
alized that we should be focusing on analyzing early releases
of Snort. We tried to compile different versions of Snort
varying from 1.0 to 1.6.1. Of these releases, only Snort 1.3
compiles with a standard gcc compiler. Other releases do
not compile with gcc. We, therefore, proceeded with ana-
lyzing Snort 1.3 with KLEE. All references to Snort in the
evaluation section implicitly refer to version 1.3.

Snort code is organized into the following high-level mod-
ules:

• Packet Decoder: Packet headers for protocols like
Internet Protocol (IP), Transmission Control Protocol
(TCP), User Datagram Protocol (UDP) etc. have very
specific header formats which have to parsed out by
Snort. This module encapsulates the details of this
information extraction in order to:

– Process rules specified by the user since rules are
protocol specific and

– Maintain state for how many packets of each pro-
tocol have been processed.

• Rules Engine: This module takes in the rules file pro-
vided by the user as an input. It parses and validates
the rules, and creates a forest of rule chains, where
each forest comprises of rules applicable to individual
protocols.

• pcap File Replayer: This basically opens file descrip-
tor to a pcap file. It reads the input file and parses out
the header and payload from the input file.

• String Utils: Packet Decoder and rules engine pro-
cess strings and therefore, common string utilities like
tokenizing strings, searching for substrings etc, are ab-
stracted out into a common utility class.

• Logging Functionality: This performs two-fold func-
tionality of:

– creating relevant alerts in accordance with the
rules specified by the network operator and

– logging relevant debugging information for the de-
velopers

Snort has one external dependency on libpcap library. It is
used to open a sniffing session on an Ethernet interface.

We executed KLEE on the snort library in two phases:

1. Phase 1: Testing the end-to-end functionality of
Snort:
Snort provides two high-level functionalities namely sniffing
incoming packets and replaying pcap files. We primarily ver-
ified the replay feature. We were not able to operate Snort
in sniffer mode due to limited socket support in KLEE. Cov-
erage results for replay feature are shown in Table 1.
For our analysis, we had made the packet symbolic, in order
to generate sample packets that will execute different code
paths. The instruction coverage includes code lines executed
in associated libraries as well. Snort uses only the socket
connection code of libpcap and does not invoke rest of libp-
cap code. When we had first executed Snort with KLEE,
we had 10.14% code coverage. We improved our coverage by
using a leaner version of libpcap library. We also refactored
Snort code and removed dead code to further improve code
coverage.

2. Phase 2: Testing individual libraries of KLEE:
In order to bypass limited socket support in KLEE, we took
the bottom-up approach to verify KLEE. We verified the
foundational components namely the packet decoder, rules
engine processor, pcap file replayer and string utilities. Log-
ging utility simply redirects strings to log files and therefore
does not encapsulate bulk of the processing logic of Snort.
We, therefore, chose to focus on other building blocks of
Snort.

• Packet decoder and pcap File Replayer: We ver-
ified these modules together because of their inter-
twined functionality. For these modules, we made the
packet which is a character array symbolic and ver-
ified decoding of IP packets. We took two different
approaches to this due to the observation that packet
headers have a specific format. We were curious if giv-
ing KLEE hints about payload length, protocol etc.
will cause a change in coverage results. Our observa-
tion is that instruction coverage improves marginally
whereas branch coverage is the same in both cases.
These results are shown in Table 2 and Table 3.

• Rules Engine: For verifying the rules engine, we
made individual rule strings symbolic, with the expec-
tation that KLEE will generate sample rules that will
exercise specific code paths. Although KLEE gener-
ated more than 150 thousand test cases, it was able to
achieve code coverage of only 16.87%. This is shown
in Table 4.
We tested the replay functionality with a test rules file
and measured the resultant code coverage. We were
able to cover 52.98% of the rules engine processor code
with only 25 rules. This is not surprising since rules
can be free-form strings, and developers or network en-
gineers can inherently do a better job of crafting such

3



KLEE: done: total instructions = 1921059
KLEE: done: completed paths = 2203
KLEE: done: generated tests = 2203

Instrs
Time
(s)

ICov
(%)

BCov
(%)

ICount
TSolver
(%)

1921059 26.18 29.43 22.75 24333 93.73
Table 1: Coverage results for Snort when operated in pcap
replay mode

KLEE: done: total instructions = 23177300
KLEE: done: completed paths = 12921
KLEE: done: generated tests = 12921

Instrs
Time
(s)

ICov
(%)

BCov
(%)

ICount
TSolver
(%)

23177300 66.97 37.46 26.55 6505 15.60
Table 2: Coverage of Packet decoder with packet length and
header constraints

free-form strings to test different code paths.

• String utilities: There are three helper functions
used by Snort:

– Substring search functionality: This is used
to find a pattern in a given string, where the
search is not based on a regular expression. For
the purpose of our analysis, we made both the
pattern and the string to be searched symbolic.
The results are in Table 5

– Pattern match functionality: This is simply
a different implementation of the substring utility
mentioned above. The results for KLEE instruc-
tion coverage are shown in Table 6.
When we looked through the larger code base, we
realized that this is dead code and we removed it.
Verifying code from bottom-up gave us the chance
to analyze the code more closely. We eliminated
dead code and also refactored code to minimize
duplication of code. It also increased our confi-
dence in our verification results.

– String Tokenizer: This is used to tokenize the
input string using a specified separator. Both
the string to be tokenized and the separator were
made symbolic for our analysis. The results from
this are shown in Table 7

Thus, by using a mix of bottom up and end-to-end function-
ality verification, we analyzed different parts of Snort using
KLEE.

KLEE: done: total instructions = 15693845
KLEE: done: completed paths = 8564
KLEE: done: generated tests = 8564

Instrs
Time
(s)

ICov
(%)

BCov
(%)

ICount
TSolver
(%)

15693845 51.25 37.35 26.55 6493 24.51
Table 3: Coverage of packet decoder with no header and
protocol constraints

KLEE: done: total instructions = 7316565
KLEE: done: completed paths = 156764
KLEE: done: generated tests = 156681

Instrs
Time
(s)

ICov
(%)

BCov
(%)

ICount
TSolver
(%)

7316565 31.78 16.87 12.39 13328 39.05
Table 4: Coverage results for Snort’s Rule Engine

Instrs
Time
(s)

ICov
(%)

BCov
(%)

ICount
TSolver
(%)

275412 13.77 43.41 21.43 463 90.13
Table 5: Coverage for substring utility in String Utils

6. RELATED WORK
At the point where a number of our initial results to exe-
cute KLEE to analyze software end-to-end failed, we looked
at recently published papers to gain insight into additional
applications cases for KLEE. Below is a brief review of in-
teresting papers:

6.1 Automatic Synthesis of NF Models by Pro-
gram Analysis
This work [7] was done at HP Labs, and describes a new
tool called NFactor that refactors and slices code in order to
generate its forwarding model.

This paper identifies that running symbolic execution on an
unmodified NF is not easy, and therefore, it is beneficial to
come up with a model of the NF first. Developing accurate
models of arbitrary NFs is challenging for a number of rea-
sons including usage of non-standard and proprietary NFs.
They develop a technique to slice the programs and analyze
state tainting to come up with accurate models of the NF
execution.
While this work is only tangentially related to the work we
did for the course project, it caught our attention because
they use their NFactor tool to create a model for Snort 1.0.
This is the only paper that runs Symbolic Execution on a
commercially used NF, but even here the Symbolic Execu-
tion is run on a reduced slice of the original codebase.

NFactor makes two standard non-limiting assumptions on
the code structure:

• Since the NF program needs to continuously process
incoming packets, there exists a packet processing loop.
The same assumption has been made in StateAlyzer [4].

• NF programs usually use standard library or system
functions to exchange packets with the OS kernel/net-
work devices - thus, NFactor leverages this knowledge
to locate packet read/write statements in the program.
NFactor identifies the variable that stores a packet by

KLEE: done: total instructions = 368887
KLEE: done: completed paths = 7570
KLEE: done: generated tests = 7570

Instrs
Time
(s)

ICov
(%)

BCov
(%)

ICount
TSolver
(%)

368887 31.34 41.04 17.57 385 91.14
Table 6: Coverage for pattern matching in String Utils

4



KLEE: done: total instructions = 7041845
KLEE: done: completed paths = 7738
KLEE: done: generated tests = 7711

Instrs
Time
(s)

ICov
(%)

BCov
(%)

ICount
TSolver
(%)

7041845 21.03 40.25 26.99 5230 40.22
Table 7: Coverage for string tokenizer in String Utils

fetching the return value of the packet input function
or the argument of the packet output function.

Using this slicing method, they were able to get a code cov-
erage of about 4%. This is significantly lower than the code
coverage we got - 29%.

The most curious thing about this work is not the clever
program analysis tools to identify packet and state slices, but
the choice of the Snort version they analyzed. The version
of Snort used for this work was 1.0 (released in 1999), and
there is no clear rationale provided for why they used this
version. It might be the case, as with most research, that
the engineering hassles of making these big software projects
work are not reliably conveyed in the publication.

6.2 Formally Verified NAT
Network Address Translator (NAT) modifies the incoming
packets by rewriting IP addresses and the associated check-
sums in the packet header. Verifying NAT is hard because it
is a stateful NF. It maintains a flow table and has to expire
entries in the flow table after a configured timeout.

In order to formally verify NAT, the authors used two dif-
ferent formal verification methods - theorem proving and
symbolic execution. They first rewrote NAT by abstracting
away the stateful code and the associated data-structures
into a separate library called libVig. This separation of con-
cerns sets the base for applying different verification meth-
ods.
To verify the libVig library, its code is first annotated with
pre and post conditions. The specified conditions are then
fed to Verifast which does the actual task of verification. Ac-
cording to the paper, it took researchers two-person months
to verify the code. After the stateful code was verified, the
remainder of the stateless code was verified using KLEE.
They used the premise that a system composed of individ-
ual formally verified components is automatically verified.

Apart from a verified NAT, [8] makes two contributions to
the verification and NF research. The first is the concept
of lazy proofs to bind together individually verified compo-
nents. The second is the libVig library itself, which has
the potential of being reused across NFs. However, from a
usability perspective, it is hard to ignore that the authors
of this paper had to rewrite the NAT code from the ground
up. Moreover, the libVig library does not use concurrent
data structures. As a result, the verified NAT does not work
with multiple threads.

6.3 Formally Verified NAT Stack
The research group that worked on [8] also published [6]
wherein they extended the toolchain to verify the kernel-
bypass framework and a NIC driver in the context of a NAT.
Zaostrovnykh et al. presented a formally verified NAT where
they used a verified library to implement the NAT. But,

they assumed that the underlying layers - the kernel bypass
mechanism provided by Intel’s Data Plane Development Kit
(DPDK) [2] and the NIC driver - work correctly. While this
is a common practice, it is not necessarily true.

In [6], Pirelli et. al. model the C library and the underlying
hardware, by which they were able to remove the NIC driver
and DPDK from the Trusted Compute Base. They follow a
pragmatic way in deciding which parts of the stack to ver-
ify, and claim that code that is immature (and thus likely to
have bugs) and code that has a high potential for reuse in
future NFs should be the prime candidates for verification.

They also note that while kernel-bypass frameworks such
as DPDK may be large, writing a basic NF requires only a
small subset of DPDK: initialization, receiving packets, and
sending packets. This subset contains a lot of code, but it
has simple control flow and almost all is simple operations
such as reading or writing to device registers.

Instead of verifying DPDK as is, they use a lot of clever
changes to make it more amenable to symbolic execution;
Ring buffers are replaced with one item structures; inline
assembly is avoided in the code; single instruction, multiple
data (SIMD) instructions support was added to the KLEE
execution engine. Also, since KLEE cannot deal with mul-
tithreading, they implement their NAT as a single threaded
application and do not use DPDK’s thread related features.

While this paper is a good attempt to verify all the compo-
nents of the stack, it is important to note that the researchers
have not verified 100% of the code base. They reduced the
scope of code to be verified and then used symbolic execu-
tion methodology to verify rest of the code.

6.4 Automated Synthesis of Adversarial Work-
loads for Network Functions
This paper [5] addresses the problem of performance verifi-
cation. NF functionality was traditionally implemented us-
ing specialized hardware, but the move to commodity hard-
ware has introduced the additional problem of performance
unpredictability. NF performance verification is critical be-
cause most NFs are latency sensitive, and since NFs are the
entry point of any system/service, they can impact the SLA
of the entire system.

The main contribution from this paper is a system called
CASTAN (Cycle Approximating Symbolic Timing Analysis
for Network Functions) that uses KLEE to generate pcap

files to stress the system. CASTAN addresses the problem
of path explosion in symbolic execution by using two search
heuristics: maximizing number of instructions executed and
maximizing cache misses. CASTAN modified KLEE to use
the above search heuristics. The resultant test cases were
then used to generate pcap files that stress the system, which
can then be used by developers to identify performance bot-
tlenecks in the system.

CASTAN is novel in its use of formal verification methods
to verify the performance of a system. To evaluate CAS-
TAN, the authors measure throughput and latency degrada-
tion under different workloads including the CASTAN gener-
ated workload. However, their evaluation does not produce
strong results - Unirand workload outperforms CASTAN for

5



all NFs that were used to evaluate CASTAN. Unirand work-
load is generated by simply using a random number genera-
tor for source and destination IP addresses and ports. While
CASTAN is an interesting application of symbolic execution,
the key take-away from the paper is that the most compli-
cated solution isn’t necessarily the best one. In this case,
one must evaluate the cost benefit of using symbolic execu-
tion for it’s not universally more likely to lead to a better
solution.

7. DISCUSSION
We encountered a number of problems when verifying Snort
using KLEE. We also looked at recent research papers and
analyzed their strengths and weakness. We summarize our
key takeaways below:

• Lack of support for multi-threaded software: KLEE has
the inherent limitation that it only works with single-
threaded code. This limitation gets propagated to all
systems that rely on KLEE, as is evidenced in the
many systems discussed in Section 6.

• Lack of support for sockets: KLEE does not support
inline assembly code and therefore, KLEE crashes when
trying to bind to a socket. As a result, it is hard to
verify code without modifying important networking
code.

• The need to modify code specially for verification: Of-
ten it is required to rewrite the code-base in order to
verify a NF, as seen in [8]. This is tenable for smaller
pieces of software, but with larger components and
legacy applications, it is a non-trivial exercise to re-
implement the applications from scratch.

• Symbolic Execution is most useful when used from ini-
tial stages of development : As a corollary from the
above arguments, it is clear that it is easier to verify
simpler pieces of code. Therefore, it is beneficial for the
developer to use such tools from the early stages of de-
velopment. Incremental verification of smaller pieces
of code and reorganization is easier when done in an
agile manner, compared to the case where develop-
ers have to invest lots of effort to verify a large and
complicated code-base that’s at an advanced stage of
development.

• During the initial stage of the project, we were rather
surprised that research papers [7] published in Hot-
Nets 2016 used an ancient version of Snort (Version
1.0, Released in 1999) for analysis. They do not ex-
plicitly explain the rationale for their choice of version,
but it certainly stands out as a red flag.
Our conjecture is that they were either limited by a)
the code complexity of later versions of Snort code or
b) Some feature of later versions of Snort is not com-
patible with KLEE. Regardless of the underlying rea-
son, it is hard to ignore that even recent papers do not
use the latest versions of open source NFs for their
analysis. Better verification tool support and com-
munity best-practice guidelines for porting large code-
bases to a form that’s amenable to symbolic execution
are sorely needed.

8. CONCLUSION
We learned about the details of how symbolic execution en-
gines work, and about the recent research efforts in verifi-
cation of the software data plane. While we stumbled into
a number of technical problems while verifying NFs, each
roadblock gave us deep insights into the usability aspects of
KLEE. We were able to partly verify Snort’s functionality,
particularly its ability to replay pcap files. We also studied
all the sub-components of Snort and integrated them with
KLEE, to get a better understanding of Snort, and how to
structure code in a way that’s amenable to verification.

9. REFERENCES
[1] Coreutils - gnu core utilities.

https://www.gnu.org/software/coreutils/.

[2] DPDK: Data plane development kit.
https://www.dpdk.org/.

[3] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

[4] J. Khalid, A. Gember-Jacobson, R. Michael,
A. Abhashkumar, and A. Akella. Paving the way for
nfv: Simplifying middlebox modifications using
statealyzr. In NSDI, pages 239–253, 2016.

[5] L. Pedrosa, R. Iyer, A. Zaostrovnykh, J. Fietz, and
K. Argyraki. Automated synthesis of adversarial
workloads for network functions. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication, pages 372–385. ACM, 2018.

[6] S. Pirelli, A. Zaostrovnykh, and G. Candea. A formally
verified nat stack. In Proceedings of the 2018 Afternoon
Workshop on Kernel Bypassing Networks, pages 8–14.
ACM, 2018.

[7] W. Wu, Y. Zhang, and S. Banerjee. Automatic
synthesis of nf models by program analysis. In
Proceedings of the 15th ACM Workshop on Hot Topics
in Networks, pages 29–35. ACM, 2016.

[8] A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki,
and G. Candea. A formally verified nat. In Proceedings
of the Conference of the ACM Special Interest Group
on Data Communication, pages 141–154. ACM, 2017.

6

https://www.gnu.org/software/coreutils/
https://www.dpdk.org/

	Abstract
	Introduction
	Background
	Snort
	KLEE

	Challenges
	Evaluation
	Related Work
	Automatic Synthesis of NF Models by Program Analysis
	Formally Verified NAT
	Formally Verified NAT Stack
	Automated Synthesis of Adversarial Workloads for Network Functions

	Discussion
	Conclusion
	References

